亚洲国产成人无码AV在线播放,亚洲色偷拍另类无码专区,亚洲AV日韩AV永久无码久久,国产手机在线精品

技術(shù)文章您現(xiàn)在的位置:首頁 > 技術(shù)文章 > ClickChemistry點(diǎn)擊化學(xué)疊氮試劑Azide Plus and Picolyl Azide Reagents

ClickChemistry點(diǎn)擊化學(xué)疊氮試劑Azide Plus and Picolyl Azide Reagents

更新時間:2023-04-22   點(diǎn)擊次數(shù):1118次

Azide Plus and Picolyl Azide 試劑

Kinetic comparison of conventional azide
(Figure 1). Kinetic comparison of chelating azide and non-chelating conventional azide.

Recent advances in the design of copper-chelating ligands, such as THPTA or BTTAA that stabilize the Cu(I) oxidation state in aqueous solution, improve the kinetics of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and greatly increase the sensitivity of alkyne detection. Copper-chelating ligands have also been shown to increase the biocompatibility of the CuAAC reaction by preventing the copper ions from causing biological damage1. The next step in improving the CuAAC reaction was the development of copper-chelating azides as more reactive substrates. Since it is speculated that the Cu(I)-azide association is the rate-determining step in the CuAAC catalytic cycle2, the introduction of a copper-chelating moiety at the azide reporter molecule allows for a dramatic raise of the effective Cu(I) concentration at the reaction site, enhancing the weakest link in the reaction rate acceleration(Figure 2). It has been proposed that the high reactivity of chelating azides comes from the rapid copper-azido group interaction which occurs prior to Cu(I) acetylide formation, and this renders the deprotonation of alkyne in the rate-determining step3. This concept was successfully exploited to perform CuAAC reactions using pyridine-based copper-chelating azides (picolyl azides) as substrates4-6. Nevertheless, the copper-chelating motif of picolyl azide molecules is not complete, requiring the presence of a copper chelator (e.g. THPTA) to achieve significant improvement in the kinetics of the CuAAC reaction3, 4.

In efforts to improve the performance of the CuAAC reaction in complex media, Click Chemistry Tools developed new chelating azides with a complete copper-chelating system in their structure, termed “Azides Plus"(Figure 3). These azides are capable of forming strong, active copper complexes and are therefore considered both reactant and catalyst in the CuAAC reaction. Using these types of azides, the CuAAC reaction becomes a bimolecular reaction and displays much faster kinetics compared to the CuAAC reaction performed with conventional azides.

Comparative kinetic measurements for the CuAAC reaction(Figure 4)were performed using an agarose-alkyne resin labeling experiment (3.0 uM CuSO4, with (6.0 uM) or without THPTA ligand) using Cy5 Azide Plus, Cy5 Picolyl Azide, and Cy5 bis-Triazole Azide – the fastest copper-chelating azide that has been reported to date7. As expected, the picolyl azide containing the incomplete copper-chelating motif displays relatively slow reactivity, in particular without the presence of THPTA. The kinetic data shows that completing a copper-chelating moiety greatly enhances reactivity, and importantly does not require the presence of copper-chelating ligands. Interestingly, the copper-chelating azides developed by Click Chemistry Tools display almost identical reactivity in the CuAAC reaction compared to the most reactive copper-chelating azide reported up to now7, bis-triazole azide.

The new copper chelating azides allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. This unprecedented reactivity in the CuAAC reaction is of special value for the detection of low abundance targets, improving biocompatibility, and any other application where greatly improved S/N ratio is highly desired.

Selected References:
  1. Steinmetz, N. F., et al. (2010). Labeling live cells by copper-catalyzed alkyne–azide click chemistry. Bioconjug Chem., 21 (10), 1912-6. [PubMed]

  2. Rodionov, V. O., et al. (2007). Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. J Am Chem Soc., 129 (42), 12705-12. [PubMed]
    Presolski, S. I., et al. (2010). Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. J Am Chem Soc., 132 (41), 14570-6. [PubMed]

  3. Simmons, J. T., et al. (2011). Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition. J Am Chem Soc., 133 (35), 13984-4001. [PubMed]

  4. Marlow, F. L., et al. (2014). Monitoring dynamic glycosylation in vivo using supersensitive click chemistry. Bioconjug Chem., 25 (4), 698-706. [PubMed]

  5. Clarke, S., et al. (2012). Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. Angew Chem Int Ed Engl., 51 (24), 5852-6. [PubMed]

  6. Gaebler, A., et al. (2016). A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins. J Lipid Res., 57 (10), 1934-1947. [PubMed]

  7. Gabillet, S., et al. (2014). Copper-chelating azides for efficient click conjugation reactions in complex media. Angew Chem Int Ed Engl., 53 (23), 5872-6. [PubMed]

訂購信息(靶點(diǎn)科技國內(nèi)倉庫):


靶點(diǎn)科技(北京)有限公司

靶點(diǎn)科技(北京)有限公司

地址:中關(guān)村生命科學(xué)園北清創(chuàng)意園2-4樓2層

© 2025 版權(quán)所有:靶點(diǎn)科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:294131  站點(diǎn)地圖  技術(shù)支持:化工儀器網(wǎng)  管理登陸

快穿之胸大喂奶h| 精品国产污污免费网站入口| 我和闺蜜在ktv被八人伦| 色偷偷噜噜噜亚洲男人| 成熟闷骚女邻居引诱2| 免费观看性生交大片| 99久久精品国产一区二区三区| 成熟丰满熟妇高潮XXXXX| 杨门十二寡妇肉床艳史电影| 男人狂躁进女人免费视频vr | 看AV免费毛片手机播放| 亚洲熟悉妇女xxx妇女av| 人妻厨房出轨上司hd院线波多野| 精品国精品国产自在久国产| 国产精品无码免费播放| 黑人40厘米全部进去a片| 偷玩同学漂亮麻麻张嫣| 亚洲AV成人无码久久精品老人 | 黑人勃起太大进不去| 人鲁交yazhonghucxx| 精东影视传媒MV国产剧能看不| WWW.色五月| 国内精品伊人久久久久影院对白| 我和闺蜜在ktv被八人伦| 亚洲欧洲日产国码高潮AV| japanese老熟妇乱子伦视频| 无码国产精品一区二区免费式芒果 | 美女露?0的奶头无挡挡| 高洁在公车被灌满jing液| 亚洲熟妇色自偷自拍另类| 亚洲AV无码一区二区三区电影| 亚洲精品国产精品乱码不卡√| 绿帽娇妻肚子被灌满精怀孕 | 无码性午夜视频在线观看| 久久精品久久久久久久精品| 男同gv在线观看免费| av网站在线观看| 性一交一乱一乱一视一频| 少妇和公翁系列小说| 中文字幕乱码在线人视频| 性videostv另类极品|